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Figure 3 | Mapping the shakti lattice to the six-vertex model. a, The vertex types found in the shakti lattice, showing only the short-island shakti lattice.
Consistent with the standard literature nomenclature for the vertices in artificial square spin ice, we number the vertices with Roman numerals in order of
increasing energy. We distinguish vertices with di�erent numbers of islands by a subscript indicating the number of islands. b, A map of the three-island
vertex configurations in the magnetic force microscope image in Fig. 2e. The solid lines indicate the boundaries of the plaquettes, the dashed lines indicate
the two-island vertices in the middle of each plaquette, and the directions of the island moments are reproduced as red arrows in the upper-leftmost
plaquette for illustrative purposes. The circles indicate the location of the three-moment vertices; the Type I3 vertices are denoted by open circles, and the
higher energy Type II3 vertices are denoted by filled circles. c, The six degenerate ground-state configurations for arrangement of the three-moment vertex
types on a plaquette.

minimize the global energy of the system, the lattice topology re-
quires that half the three-moment vertices are in the local magneto-
static ground state and half are in a higher-energy defect state31,32.

As a result of the mixture of states on the three-moment vertices,
the shakti ground state has intrinsic degeneracy arising from the
freedom in allocating the two higher-energy vertices among the
four possibilities on each plaquette; the two defect vertices on each
plaquette can be equivalently located at four di�erent sites for a
total of six possible energetically equivalent configurations (Fig. 3c).
Therefore, each plaquette can be mapped precisely onto a vertex of
a classic two-dimensional six-vertex model obeying the ice rule31,32.
This correspondence is illustrated in Fig. 3b, where we take the
moment configuration from Fig. 2—the first physical realization
of the six-vertex model ground state. The correspondence between

individual plaquettes and vertices of the six-vertex model is shown
in Fig. 3c. Note that the observed emergent frustration and high
degeneracy that arises from the topology of the shakti lattice is a
direct consequence of its design and has no obvious analogue in any
naturally occurring lattice.

By plotting the vertex population as a function of lattice spacing
(Fig. 4), we demonstrate explicitly that we are obtaining the ground
state of the shakti lattice by tuning the strength of the moment
interactions. Although the vertex distribution is close to random
at large lattice spacing, when the spacing is small, we obtain the
precisely expected vertex distribution for the short-island lattice.
The long-island shakti lattice does not quite achieve this degenerate
six-vertex state within the range of our experiments, presumably
owing to the more-constrained dynamics of the longer islands.
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only begun to be explored experimentally18, and have not been visua-
lized directly as experimental evidence for the collective behaviour of
magnetic charges and their usefulness as degrees of freedom in low-
energy collective physics. We use here a thermal annealing technique
to achieve the first experimental validation of the predicted charge-
ordered phase: incipient magnetic charge ordering in artificial kagome
spin ice.

The current gap between theory and experiment is in part a con-
sequence of the present limits on our ability to place the magnetic
moments of artificial spin ice in the desired collective thermodynamic
state. Although a.c. demagnetization can produce well defined and
predictable out-of-equilibrium statistical ensembles of different
entropy, it cannot approach the two-fold degenerate ground state of
square ice15. In the case of artificial kagome spin ice, a.c. demagnetiza-
tion could easily access the kagome ice I phase (in which the islands
obey the two-in/one-out or one-in/two-out pseudo-ice rule), probably
because of that state’s massive entropy. Yet a.c. demagnetization failed
to produce any of the predicted ordered phases governed by long-
range interactions.

Recently a few alternative ways to thermalize artificial spin ice have
been developed. Morgan and co-workers examined3,19 the as-grown
state of artificial square spin ice and discovered that thermalization
during the first stages of growth is preserved, leaving the sample in a
very low energy state. This single-shot approach represents the best
energy minimization available to date for artificial spin ice, although its
reliance on the initial conditions of growth limits the degree of control
which can be obtained by this method. Kapaklis et al. fabricated20

artificial spin ice in a material that has a Curie temperature (TC) of
230 K, below room temperature. Magneto-optical Kerr effect (MOKE)
measurements of remanent states revealed evidence for the creation of
thermal excitations slightly below the Curie temperature. Although
this work in some sense represents the successful thermalization of
artificial spin ice, it focused on the remanent state (rather than the true
ground state), and the MOKE measurements were sensitive only to the
global properties of the samples, so the exact microstates of the samples
were not determined. Several groups21–23, inspired by these experi-
ments, have carried out simulations of thermalized artificial spin-ice
arrays, but post-growth thermalization of artificial spin ice into its
zero-field ground state has not yet been experimentally demonstrated.

The results of Morgan and co-workers demonstrated that therma-
lization of artificial spin ice is possible, inspiring the present work in
which we achieve such thermalization on demand and then use it to
explore the long-range collective physics. We fabricated square and
kagome arrays of permalloy (Ni80Fe20) nanoislands on a silicon nitride
substrate using an electron beam lithography lift-off process described
elsewhere1. The islands are rectangular with semicircular ends (‘stadium-
shaped’), nominally 220 nm long by 80 nm wide and 25 nm high. The
single-domain character of the islands was confirmed by MFM (right
panels of Fig. 1). We studied arrays with a wide range of lattice con-
stants (320–880 nm for square, and 260–1,050 nm for kagome) so as to
have a range of magnetostatic interaction strengths. The arrays were
then polarized in a strong magnetic field at room temperature, heated
in vacuum in nominally zero magnetic field to an annealing temper-
ature above the islands’ Curie temperature (540–545 uC as measured
by vibrating sample magnetometry), and then allowed to cool slowly to
room temperature. Square and kagome arrays of all lattice constants
were fabricated together on chips so that all the arrays on a chip shared
the same annealing protocol. Results are shown for an annealing tem-
perature of 545 uC, but qualitatively consistent results were obtained on
multiple samples annealed just above the Curie temperature. Importantly,
by judicious choice of substrate materials and careful scanning of the
relevant temperature range in annealing experiments, we were able to
identify a temperature window in which effective annealing can be
performed while avoiding film/substrate interdiffusion and lateral
degradation of the islands. Details of sample fabrication and this anneal-
ing process can be found in Methods, Supplementary Information and

Supplementary Figs 1–3. Our expectation was that the island moments
would align into a minimum-energy state on cooling through the Curie
temperature, and that this state would be determined by the lattice
geometry, that is, the artificial spin ice would be thermalized.

After annealing, we collected MFM images of each array, which
allowed us to examine the thermalized state of the moment arrange-
ments. Images of the annealed artificial square spin-ice arrays revealed
extensive domains of ground-state ordering (Fig. 2). The ground state
consists of an antiferromagnetic ordering on the vertical and hori-
zontal sublattices. The large size of the domains (in many cases larger
than the 10–20-mm-wide MFM images) and the paucity of isolated
monopolar charge excitations, especially in the samples with the smal-
lest lattice constants, underscore the effectiveness of our annealing
process at minimizing the magnetostatic energy of the arrays. In the
arrays with smallest lattice constant, only the handful of islands located
on the isolated domain walls are not in the ground state (Supplemen-
tary Fig. 4). Approximating the islands’ magnetization as proportional
to the square root of TC – T (where T is the physical sample temper-
ature), we found the excitations of the 400-nm square lattice fit well to a
Boltzmann distribution corresponding to a temperature of T < 540 uC ,
as shown in Supplementary Fig. 6.

To gain further insight into the development of these large ground-
state domains in annealed artificial square spin ice, we extracted the
pairwise correlations between islands from our MFM images. The
correlation between two islands is 11 (21) if the islands’ magnetic
moments are aligned to minimize (maximize) the dipolar interaction
energy1. A plot of correlation as a function of island separation is shown
in Fig. 3. The distance at which the correlation falls to 1/e < 0.368
corresponds to a rough estimate of the domain size24. Because the
dipolar interaction between islands is largest for the arrays with the
smallest lattice constants, the correlations in these arrays decay the most
slowly. This can be qualitatively confirmed by examining the MFM
images of Fig. 2: smaller lattice constants produce larger ground-state
domains. The correlation between islands at the largest lattice spacings
is insignificant beyond one or two lattice constants.

The ground-state ordering observed in our artificial square spin ice
highlights a significant difference between artificial square spin ice and
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Figure 2 | MFM images of annealed artificial square spin ice. a–d, The lattice
constants are given at top left, and are 320 nm (a), 360 nm (b), 400 nm (c) and
440 nm (d). The image size is also indicated at top left. Notice the decrease in
domain size with increasing lattice constant, a trend also revealed in Fig. 3 by
correlations between islands. The ordering of moments is in stark contrast with
the disordered state resulting from a.c. demagnetization1,2.
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highlights a significant difference between artificial square spin ice and
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Figure 2 | MFM images of annealed artificial square spin ice. a–d, The lattice
constants are given at top left, and are 320 nm (a), 360 nm (b), 400 nm (c) and
440 nm (d). The image size is also indicated at top left. Notice the decrease in
domain size with increasing lattice constant, a trend also revealed in Fig. 3 by
correlations between islands. The ordering of moments is in stark contrast with
the disordered state resulting from a.c. demagnetization1,2.
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differently under ac demagnetization: Square ice never
finds (or closely approaches) the ground state, whereas
demagnetized hexagonal ice returns the vertex-model
ground state with at most sparse excitations.

We first consider the case of the square ice arrays, with
lattice constant a¼ 400, 440, 480, 560, 680, and 880 nm.
The external field in our rotational demagnetization is
initially strong enough to coerce every island into follow-
ing the external field, but, as its magnitude decreases,
successive islands presumably begin to ‘‘fall away’’ from
the field, locked in by favorable magnetostatic interactions
with their neighbors. The accumulation of these distinct
‘‘defects’’ carved in the initial uniform set of aligned type-
II vertices generates a well-defined statistical system. In an
isotropic, vertex-gas approximation, where each vertex is
treated as an independent entity, there are M ¼

N!
ðN#DÞ!

Q
!
q N!!
N!!

ways to choose D defected vertices among

the N vertices of a given lattice, each allocated among the
four degenerate vertex types according to a distribution N!

of degeneracy q !, ! ¼ I; . . . ; IV. Calling " ¼ D=N and
#! ¼ N!=D, we consider S¼ lnM and maximize it under
a vertex-energy constraint on the ensemble of de-
fected vertices, or "$# " ln"# ð1 # "Þ lnð1 # "Þ #
"%eð

PIV
!¼I E!#! # EÞ, where $ ¼ #PIV

!¼I #! ln
v!

q !
is the

‘‘entropy’’ of the defected ensemble. We obtain a canoni-
cal distribution for the defects

#! ¼ q ! expð#%eE!Þ
Zð%eÞ

(1)

[Zð%eÞ is defined by normalization of #!] as well as an
expression for the auxiliary quantity "

"ð%eÞ ¼
1

exp½#$ð%eÞ& þ 1
; (2)

where $ð%eÞ is obtained by substitution of Eq. (1) into the
expression for $. Equations (1) and (2) provide the relative
#! vertex population densities as

n I ¼ "#I; n III ¼ "#III; n IV ¼ "#IV;

n II ¼ ð1 # "Þ þ "#II:
(3)

We compute the vertex energies by using a ‘‘dumbbell’’
model (as in Ref. [29]), in which the magnetic dipole is
treated as a finite-size dumbbell of monopoles, and we
consider only interactions between monopoles converging
in each vertex: Energies then scale as ða# lÞ#1 (where a is
the lattice constant and l the length of the islands). By
imposing EI ¼ 0 and EIII ¼ 1 , one finds EII ¼
ð

ffiffiffi
2

p
# 1 Þ=ð

ffiffiffi
2

p
# 1 =2 Þ and EIV ¼ 4

ffiffiffi
2

p
=ð2

ffiffiffi
2

p
# 1 Þ. In this

simple dumbbell model of the energetics, the ratios be-
tween different vertex energies are independent of the
array lattice constant.
As a simple test of the basic assumptions of the model

above [1], we consider the quantities lnð5n I=2 n IIÞ and
lnð8 n I=2 n IIIÞ as deduced from the measured n I, n II, and
n III. These quantities should be proportional to the recip-
rocal effective temperatures EII%e and EIII%e, since our
predictions for the vertex populations [Eq. (3)] at high
temperatures are well approximated by a purely canonical
distribution that assigns an anomalous multiplicity of 5
rather than 4 to type-II vertices—a fact that can be checked
by direct calculation but which also seems reasonable as
there are four different multiplicities in the defected sam-
ple and one in the background. In Fig. 2, we plot these two
quantities against each other. A linear fit returns EII=EIII ¼
0:441 , very close to the expected theoretical value
EII=EIII ¼ ð

ffiffiffi
2

p
# 1 Þ=ð

ffiffiffi
2

p
# 1 =2 Þ ¼ 0:453 obtained from

the dumbbell approximation.
In Fig. 3(a), we plot the experimentally observed pop-

ulations of each vertex type vs the effective reciprocal
temperature extracted from %eEIII ¼ ln4n In III

and the theoreti-

cal curves for the vertex populations as a function of the
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FIG. 1 (color online). Square and hexagonal artificial spin ice.
(a) Schematics (top left) and MFM (top right) of the square
arrays and the 16 vertices of the square artificial ice (bottom).
(b) Schematics (top left) and MFM (top right) of the hexagonal
arrays with the 8 vertices of the hexagonal. White arrows show
the vertex ground states, and the percentages indicate the vertex
multiplicity.
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charge-ordering transition is evidenced by Fig. 3(b), where
Binder’s fourth-order cumulants for different L cross at
Tc ! 0:267D .

The Z2 symmetry of the order parameter Q suggests that
the charge-ordering transition is in the universality class of
the Ising model. To verify this conjecture, we performed a
finite-size scaling analysis and found excellent data

collapse with the critical exponents of the 2D Ising uni-
versality class. Figures 3(c) and 3(d) show the scaling
behavior of the specific heat c and charge susceptibility
!Q . In obtaining the scaled curves, we have subtracted
a size-dependent background contribution from the spe-
cific heat.
The spin order emerging on top of magnetic charge

order is expected to be that of the
ffiffiffi
3

p
"

ffiffiffi
3

p
type shown

in Fig. 1(c), the same as in the short-range model with an
antiferromagnetic second-neighbor exchange [12]. This
can be understood as follows. In a charge-ordered state,
every triangle has two majority spins pointing into (or out
of) the triangle and a minority spin pointing the other way.
Such states can be represented by dimer coverings of a
honeycomb lattice [Fig. 1(d)]; the dimers indicate loca-
tions of minority spins. The energy of such a state is
determined by the interactions between minority spins
alone. To see that, picture a minority spin #! as a super-
position of a majority spin þ! and a minority spin of
double strength#2!; in this representation, majority spins
form an inert background. We thus arrive at a model of
dimers with point dipoles of strength 2" directed along the
dimers and towards triangles with positive charge. The
interaction energy of two dimers depends on their mutual
position. It is minimized by increasing the number of
second neighbors (distance between centers

ffiffiffi
3

p
rnn) and

reducing the number of third neighbors (2rnn). The dimer
configuration shown in Fig. 1(d) optimizes both. It is one of
three states related to each other by lattice translations. The
corresponding spin order is shown in Fig. 1(c). There are a
total of 6 magnetic ground states related to each other by
lattice translations and time reversal.
The symmetry-breaking pattern of the magnetic order

described above suggests that the magnetic transition is in
the universality class of the 2D three-state Potts model.
However, Monte Carlo simulations of the dipolar ice
model on systems up to L ¼ 36 fail to turn up any evidence
of the Potts critical behavior. The lack of a singularity in
the specific heat [Fig. 4(a)] is consistent with a Kosterlitz-
Thouless (KT) transition. This unexpected result can be

FIG. 3 (color online). Monte Carlo simulation of the charge-
ordering transition in the spin-ice model (1). (a) and (b) show the
temperature dependence of the staggered-charge order parameter
Q and Binder’s fourth-order cumulant B4Q & 1# hQ 4i=3hQ 2i2.
(c) and (d) show the scaling of specific heat c and charge-order
susceptibility !Q ¼ ðhQ 2i# hQ i2Þ=NT using critical exponents
# ¼ 0, $ ¼ 7=4, and % ¼ 1 from the 2D Ising universality class.

FIG. 2 (color online). Temperature dependence of the
specific heat cðTÞ and entropy per spin sðTÞ of the dipolar spin
ice (1) with (a) ferromagnetic exchange J ¼ 0:5D and
(b) antiferromagnetic exchange J ¼ #2:67D . The linear size
of the system is L ¼ 12. The dashed lines show levels of entropy
s ¼ 0:693 (Ising paramagnet), 0.501 (spin ice), and 0.108
(charge-ordered spin ice) per spin.

FIG. 4 (color online). Specific heat c as a function of tempera-
ture in Monte Carlo simulations of (a) the dipolar spin-ice model
Eq. (1) on the kagome and (b) the dimer model with attractive v2

on a honeycomb lattice. The peak of the specific-heat curve
corresponds to

ffiffiffi
3

p
"

ffiffiffi
3

p
magnetic and dimer ordering.
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Figure S8. Static structure factors for magnetic charge crystallites in artificial kagome spin ice. 
(a) and (b) are the static structure factors for magnetic charge crystallites for the 260 and 490 nm 
lattices shown in Fig. 4. 

The magnetic charge-charge correlation functions at varying temperatures are shown in Fig. S9. 
The different monopolar-charge pairs are defined in the inset of Fig. (a) of the main text. The 
correlations clearly increases as temperature is lowered toward the transition temperature Tc ~1.8 
J. Fig. S10(a) shows a snapshot of the magnetic charge configurations at the effective 
temperature T=3.1 J, corresponding to the spin-ice array with lattice constant 260 nm. Both the 
snapshot configuration and the corresponding Fourier transform [Fig. S10(b)] are similar to those 
from MFM data shown in Figures 4(a,b) and S8(a). Fig. S10(c) shows the structure factor 
obtained by averaging over ~3000 different charge configurations. 

 

 

 

Figure S9. Magnetic charge-charge correlation obtained from Monte Carlo simulations at 
various temperatures. The temperature is measured in units of J. 
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Figure S9. Magnetic charge-charge correlation obtained from Monte Carlo simulations at 
various temperatures. The temperature is measured in units of J. 
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Figure 3 | Mapping the shakti lattice to the six-vertex model. a, The vertex types found in the shakti lattice, showing only the short-island shakti lattice.
Consistent with the standard literature nomenclature for the vertices in artificial square spin ice, we number the vertices with Roman numerals in order of
increasing energy. We distinguish vertices with di�erent numbers of islands by a subscript indicating the number of islands. b, A map of the three-island
vertex configurations in the magnetic force microscope image in Fig. 2e. The solid lines indicate the boundaries of the plaquettes, the dashed lines indicate
the two-island vertices in the middle of each plaquette, and the directions of the island moments are reproduced as red arrows in the upper-leftmost
plaquette for illustrative purposes. The circles indicate the location of the three-moment vertices; the Type I3 vertices are denoted by open circles, and the
higher energy Type II3 vertices are denoted by filled circles. c, The six degenerate ground-state configurations for arrangement of the three-moment vertex
types on a plaquette.

minimize the global energy of the system, the lattice topology re-
quires that half the three-moment vertices are in the local magneto-
static ground state and half are in a higher-energy defect state31,32.

As a result of the mixture of states on the three-moment vertices,
the shakti ground state has intrinsic degeneracy arising from the
freedom in allocating the two higher-energy vertices among the
four possibilities on each plaquette; the two defect vertices on each
plaquette can be equivalently located at four di�erent sites for a
total of six possible energetically equivalent configurations (Fig. 3c).
Therefore, each plaquette can be mapped precisely onto a vertex of
a classic two-dimensional six-vertex model obeying the ice rule31,32.
This correspondence is illustrated in Fig. 3b, where we take the
moment configuration from Fig. 2—the first physical realization
of the six-vertex model ground state. The correspondence between

individual plaquettes and vertices of the six-vertex model is shown
in Fig. 3c. Note that the observed emergent frustration and high
degeneracy that arises from the topology of the shakti lattice is a
direct consequence of its design and has no obvious analogue in any
naturally occurring lattice.

By plotting the vertex population as a function of lattice spacing
(Fig. 4), we demonstrate explicitly that we are obtaining the ground
state of the shakti lattice by tuning the strength of the moment
interactions. Although the vertex distribution is close to random
at large lattice spacing, when the spacing is small, we obtain the
precisely expected vertex distribution for the short-island lattice.
The long-island shakti lattice does not quite achieve this degenerate
six-vertex state within the range of our experiments, presumably
owing to the more-constrained dynamics of the longer islands.
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plaquette can be equivalently located at four di�erent sites for a
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This correspondence is illustrated in Fig. 3b, where we take the
moment configuration from Fig. 2—the first physical realization
of the six-vertex model ground state. The correspondence between

individual plaquettes and vertices of the six-vertex model is shown
in Fig. 3c. Note that the observed emergent frustration and high
degeneracy that arises from the topology of the shakti lattice is a
direct consequence of its design and has no obvious analogue in any
naturally occurring lattice.

By plotting the vertex population as a function of lattice spacing
(Fig. 4), we demonstrate explicitly that we are obtaining the ground
state of the shakti lattice by tuning the strength of the moment
interactions. Although the vertex distribution is close to random
at large lattice spacing, when the spacing is small, we obtain the
precisely expected vertex distribution for the short-island lattice.
The long-island shakti lattice does not quite achieve this degenerate
six-vertex state within the range of our experiments, presumably
owing to the more-constrained dynamics of the longer islands.
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Degeneracy and Criticality from Emergent Frustration in Artificial Spin Ice

Gia-Wei Chern1, Muir J. Morrison1, and Cristiano Nisoli1

1Theoretical Division and Center for Nonlinear Studies, LANL, Los Alamos, NM 87545, USA
(Dated: October 18, 2013)

Although initially introduced to mimic the spin-ice pyrochlores, no artificial spin ice has yet exhib-
ited the expected degenerate ice-phase with critical correlations similar to the celebrated Coulomb
phase in the pyrochlore lattice. Here we study a novel artificial spin ice based on a vertex-frustrated
rather than pairwise frustrated geometry and show that it exhibits a quasi-critical ice-phase of ex-
tensive residual entropy and, significantly, algebraic correlations. Interesting in its own regard as a
novel realization of frustration in a vertex system, our lattice opens new pathways to study defects in
a critical manifold and to design degeneracy in artificial magnetic nanoarrays, a task so far elusive.

Artificial Spin Ice (ASI) has raised considerable in-
terest for its technological potentials, and as a tai-
lorable medium to investigate collective phenomena in a
materials-by-design approach [1–22]. It was inspired by
the so-called spin ice compounds [23, 24], a special class
of pyrochlore ferromagnets which, as water ice [25–27],
retain a finite entropy density even at very low temper-
atures. The nontrivial local ordering dictated by the so-
called two-in-two-out “ice rules” [25] in pyrochlore lattice
gives rise to dipolar-like power-law spin correlations [28]
at large distances. A recent surprise is the realization
that dipolar excitations in the ice manifold fractional-
ize into emergent magnetic monopole quasiparticles [29].
Degeneracy is essential for magnetic monopoles to play a
significant role in (artificial) spin ice.

The original artificial spin ice presented by Wang et al.
consists of magnetically interacting elongated permalloy
nanoislands arranged as links of a square lattice [2, 4, 5].
At low temperatures, magnetic configurations satisfying
the 2-in-2-out ice rules in square lattice can be mapped
to a six-vertex model. However the anisotropic nature
of magnetic interactions in a 2D arrangement lifts the
degeneracy of the six distinct 2-in-2-out ice-rule ver-
tices. The ground state of square ASI is thus the ordered
phase of the F -model [30, 31]. Proposals to circumvent
this limit [32], however, present technical challenges in
nanofabrication. So far, only kagome ASI, with islands
arranged along the edges of a honeycomb lattice [14–
16], exhibits an extensive degeneracy at the vertex-level
description, resulting from the 2-in-1-out or 1-in-2-out
pseudo-ice rules [33]. Yet this pseudo-ice regime is non-
critical, with exponentially-decaying spin correlation.

In this paper, we show that a critical degenerate phase
in ASI, reminiscent of 3D natural spin ice, can be re-
alized by exploiting the concept of an emergent vertex-
frustration [17], instead of frustrated pairwise interac-
tions, thus solving a long standing problem in the field.
Specifically, we consider a “shakti” lattice shown in
Fig. 1(a) which (as a graph) is isomorphic to the so-called
Cairo pentagonal tiling [34]. The degeneracy of this crit-
ical ice manifold follows from the inability of allocating
all the vertices in their lowest energy configuration. This

frustration in vertex-allocation is in contrast to the con-
ventional frustrated magnets in which the extensive de-
generacy originates from a degeneracy built-in the con-
stituting units, e.g. tetrahedra or triangles. Here instead
the elementary units, the vertices, are locally ordered,
with a unique lowest energy configuration. However an
emergent composite unit, the plaquette is frustrated to-
ward the optimal allocation of all its vertices. We show
that the degeneracy of these plaquettes can be mapped
to an exactly solvable thermal state of an emergent, frus-
trated six-vertex system, the F -model. This emergent
phase is known to be critical [31].

The shakti lattice shown in Fig. 1(a) can be derived
from the square lattice [2] by alternatively placing an

(b)(a)

(d)(c)

FIG. 1: (Color online) (a) The lattice geometry of the shakti
spin ice. The spin-ice state and the corresponding defect-
vertex configuration in a typical disordered ground state are
shown in panels (b) and (c), respectively. The defect type-II’
vertices are indicated by circles. The defect configuration is
further mapped to an emergent 6-vertex model in (d).
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that dipolar excitations in the ice manifold fractional-
ize into emergent magnetic monopole quasiparticles [29].
Degeneracy is essential for magnetic monopoles to play a
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nanoislands arranged as links of a square lattice [2, 4, 5].
At low temperatures, magnetic configurations satisfying
the 2-in-2-out ice rules in square lattice can be mapped
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of magnetic interactions in a 2D arrangement lifts the
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description, resulting from the 2-in-1-out or 1-in-2-out
pseudo-ice rules [33]. Yet this pseudo-ice regime is non-
critical, with exponentially-decaying spin correlation.

In this paper, we show that a critical degenerate phase
in ASI, reminiscent of 3D natural spin ice, can be re-
alized by exploiting the concept of an emergent vertex-
frustration [17], instead of frustrated pairwise interac-
tions, thus solving a long standing problem in the field.
Specifically, we consider a “shakti” lattice shown in
Fig. 1(a) which (as a graph) is isomorphic to the so-called
Cairo pentagonal tiling [34]. The degeneracy of this crit-
ical ice manifold follows from the inability of allocating
all the vertices in their lowest energy configuration. This

frustration in vertex-allocation is in contrast to the con-
ventional frustrated magnets in which the extensive de-
generacy originates from a degeneracy built-in the con-
stituting units, e.g. tetrahedra or triangles. Here instead
the elementary units, the vertices, are locally ordered,
with a unique lowest energy configuration. However an
emergent composite unit, the plaquette is frustrated to-
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Although initially introduced to mimic the spin-ice pyrochlores, no artificial spin ice has yet exhib-
ited the expected degenerate ice-phase with critical correlations similar to the celebrated Coulomb
phase in the pyrochlore lattice. Here we study a novel artificial spin ice based on a vertex-frustrated
rather than pairwise frustrated geometry and show that it exhibits a quasi-critical ice-phase of ex-
tensive residual entropy and, significantly, algebraic correlations. Interesting in its own regard as a
novel realization of frustration in a vertex system, our lattice opens new pathways to study defects in
a critical manifold and to design degeneracy in artificial magnetic nanoarrays, a task so far elusive.

Artificial Spin Ice (ASI) has raised considerable in-
terest for its technological potentials, and as a tai-
lorable medium to investigate collective phenomena in a
materials-by-design approach [1–22]. It was inspired by
the so-called spin ice compounds [23, 24], a special class
of pyrochlore ferromagnets which, as water ice [25–27],
retain a finite entropy density even at very low temper-
atures. The nontrivial local ordering dictated by the so-
called two-in-two-out “ice rules” [25] in pyrochlore lattice
gives rise to dipolar-like power-law spin correlations [28]
at large distances. A recent surprise is the realization
that dipolar excitations in the ice manifold fractional-
ize into emergent magnetic monopole quasiparticles [29].
Degeneracy is essential for magnetic monopoles to play a
significant role in (artificial) spin ice.

The original artificial spin ice presented by Wang et al.
consists of magnetically interacting elongated permalloy
nanoislands arranged as links of a square lattice [2, 4, 5].
At low temperatures, magnetic configurations satisfying
the 2-in-2-out ice rules in square lattice can be mapped
to a six-vertex model. However the anisotropic nature
of magnetic interactions in a 2D arrangement lifts the
degeneracy of the six distinct 2-in-2-out ice-rule ver-
tices. The ground state of square ASI is thus the ordered
phase of the F -model [30, 31]. Proposals to circumvent
this limit [32], however, present technical challenges in
nanofabrication. So far, only kagome ASI, with islands
arranged along the edges of a honeycomb lattice [14–
16], exhibits an extensive degeneracy at the vertex-level
description, resulting from the 2-in-1-out or 1-in-2-out
pseudo-ice rules [33]. Yet this pseudo-ice regime is non-
critical, with exponentially-decaying spin correlation.

In this paper, we show that a critical degenerate phase
in ASI, reminiscent of 3D natural spin ice, can be re-
alized by exploiting the concept of an emergent vertex-
frustration [17], instead of frustrated pairwise interac-
tions, thus solving a long standing problem in the field.
Specifically, we consider a “shakti” lattice shown in
Fig. 1(a) which (as a graph) is isomorphic to the so-called
Cairo pentagonal tiling [34]. The degeneracy of this crit-
ical ice manifold follows from the inability of allocating
all the vertices in their lowest energy configuration. This

frustration in vertex-allocation is in contrast to the con-
ventional frustrated magnets in which the extensive de-
generacy originates from a degeneracy built-in the con-
stituting units, e.g. tetrahedra or triangles. Here instead
the elementary units, the vertices, are locally ordered,
with a unique lowest energy configuration. However an
emergent composite unit, the plaquette is frustrated to-
ward the optimal allocation of all its vertices. We show
that the degeneracy of these plaquettes can be mapped
to an exactly solvable thermal state of an emergent, frus-
trated six-vertex system, the F -model. This emergent
phase is known to be critical [31].

The shakti lattice shown in Fig. 1(a) can be derived
from the square lattice [2] by alternatively placing an

(b)(a)

(d)(c)

FIG. 1: (Color online) (a) The lattice geometry of the shakti
spin ice. The spin-ice state and the corresponding defect-
vertex configuration in a typical disordered ground state are
shown in panels (b) and (c), respectively. The defect type-II’
vertices are indicated by circles. The defect configuration is
further mapped to an emergent 6-vertex model in (d).
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Conclusions

We can build spin systems at the nano-scale to 
generate completely different exotic behaviors, 
explore topological states both in and out of 
equilibrium, with unprecedented real-time 
real-space experimental validation, to test 
statistical mechanics at the constituent level 
and to create magnets that do not exist in 
nature. 
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